Objectives:

- Compute the areas between curves.

Motivation: We've been computing the between a curve and the x-axis. How can we compute the area between two curves?

Consider the region, R, between the two curves $y=f(x)$ and $y=g(x)$ between the vertical lines $x=a$ and $x=b$ where f and g are continuous functions and $f(x) \geq g(x)$ for all x in $[a, b]$.

What if we used rectangles?

How can we make this approximation better?
Increase n, just like before! In fact, this approximation will get better and better as $n \rightarrow \infty$.
We can express this area, A, in terms of a Riemann sum:

$$
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right] \Delta x
$$

But wait! This limit is the definite integral of $f-g$.

Definition: The area A of the region bounded by the curves $y=f(x), y=g(x)$, and the lines $x=a$ and $x=b$ where f and g are \qquad and $\quad f(x) \geq g(x)$ for all x in $[a, b]$, is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Example 1 Find the area of the region bounded by the curves $f(x)=x^{3}$ and $g(x)=0$ between $x=1$ and $x=5$.

On the interval $[1,5], f(x)=x^{3}$ is always greater than $g(x)=0$, so the upper curve is $f(x)$.

$$
\int_{1}^{5} x^{3}-0 d x=\left.\frac{x^{4}}{4}\right|_{1} ^{5}=\frac{5^{4}}{4}-\frac{1}{4}=\frac{624}{4}=156
$$

Example 2 Find the area of the region bounded by the curves $f(x)=e^{x}$ and $g(x)=x$ between $x=0$ and $x=1$.
The upper curve on $[0,1]$ is $f(x)=e^{x}$. (Draw a graph to convince yourself.)

$$
\int_{0}^{1} e^{x}-x d x=\left.\left(e^{x}-\frac{x^{2}}{2}\right)\right|_{0} ^{1}=\left(e-\frac{1}{2}\right)-(1-0)=e-\frac{3}{2}
$$

Example 3 Find the area of the region enclosed by the parabola $y=5 x-x^{2}$ and the line $y=x$.
First, we need to find out at what x-values the enclosed region starts and ends.

The intersections of the two curves are whenever $x=5 x-x^{2}$. Solving for x, we find the intersections are at $x=0,4$. We also note that the upper curve is $y=5 x-x^{2}$. So, the area is given by $\int_{0}^{4}\left(5 x-x^{2}\right)-x d x=\int_{0}^{4} 4 x-x^{2} d x=\left.\left(2 x^{2}-\frac{x^{3}}{3}\right)\right|_{0} ^{4}=2(16)-\frac{64}{3}-(0-0)=\frac{32}{3}$

Example 4 Find the area enclosed by the line $y=x-1$ and the parabola $y^{2}=2 x+6$.

Since $y^{2}=2 x+6$ is not a function of x we need to either (1) split up the integral into a ton of smaller pieces or (2) integrate with respect to y. It's going to be a lot easier to integrate with respect to y. The first step then is to rewrite each equation as a function of y, so we have: $x=y+1$ and $x=\frac{1}{2} y^{2}-3$. The intersections of these curves are where $y+1=\frac{1}{2} y^{2}-3$, which occurs at $y=4,-2$.
The "upper curve" in this case is the curve with larger x-values rather than the curve with larger y-values. So the upper curve is $x=y+1$.
So! The area is given by

$$
\int_{-2}^{4}(y+1)-\left(\frac{1}{2} y^{2}-3\right) d x=\left.\left(y^{2}+y-\frac{1}{6} y^{3}-3 y\right)\right|_{-2} ^{4}=-12
$$

